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Augmentation biocontrol is a commercially viable pest management tactic in enclosed glasshouse envi-
ronments, but is far less effective in open-field agriculture where newly released enemies rapidly dis-
perse from release sites. We tested the potential for behavior-modifying semiochemicals to increase
the retention of mass released predatory stink bugs, Podisus maculiventris Say (Hemiptera: Pentatomi-
dae), for enhanced consumption of hornworm caterpillars, Manduca sexta L. (Lepidoptera: Sphingidae).
To do so, we used controlled-release dispensers to emit the herbivore-induced plant volatile, methyl
salicylate (MeSA), or P. maculiventris aggregation pheromone from tomato field plots. Overall, we recap-
tured ca. 17% of released individuals after 36 h. This rate, however, was significantly affected by weather
(12% vs. 22% recapture in rainy vs. dry weeks, respectively) and semiochemical deployment, but only
under optimal weather conditions (19% vs. 26% recapture in control vs. pheromone plots, respectively,
during dry weeks). Further, we detected behavioral responses of wild P. maculiventris to semiochemical
treatment with 94% of all captured adults (=84 of 89 total) found in pheromone plots. Only 24 of 567 (4%)
captured stink bugs tested positive for immunomarking, suggesting that hornworm predation occurred
but at a low frequency. Importantly, we documented that sentinel caterpillar prey were depleted by pre-
dators at a higher rate in stink bug augmented plots on tomato plants occurring near (<3 m from) the
MeSA and pheromone lures. These data empirically demonstrate that both semiochemicals are capable
of increasing pest consumption via attraction of P. maculiventris. Future work should focus on mecha-
nisms of lure attraction and the long-term consequences of predator development in fields with elevated
semiochemical emissions.
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1. Introduction

Augmentation biological control (hereafter, ‘‘augmentation’’) is
the practice of mass releasing natural enemies in a pest-infested
crop, aimed at obtaining more effective control than that provided
by naturally-occurring predators and parasitoids. While this tech-
nique has potential application in a wide range of agricultural sys-
tems, it has primarily been employed in greenhouses for the
management of horticultural pests such as whiteflies, thrips, and
mites (Gerling et al., 2001; Gillespie, 1989; van Lenteren et al.,
1997; van Lenteren and Woets, 1988). Implementation in open-
field agriculture is far less prevalent and frequently unsuccessful
when tested. For example, only 15% of experimental field studies
effectively reduced pest abundance to target densities, whereas
64% failed (Collier and Van Steenwyk, 2004). Importantly, dispersal
of augmented beneficials beyond the targeted area was noted as a
central factor underlying the failure of these release programs.
Heimpel and Asplen (2011) also highlighted excessive dispersal
as a key mechanism driving the failure of inundative biocontrol re-
leases. For example, only 9 lady beetles (Hippodamia convergens
(Guérin-Méneville)) were recaptured 24 h after releasing 7125
adults into wheat, corn, and alfalfa fields, yielding a recapture rate
of merely 0.1% (Kieckhefer and Olsen, 1974). Later attempts re-
leased an astounding 2,250,000 individuals and after just 4 days
not a single released predator was detected in the field (Kieckhefer
and Olsen, 1974). With such poor retention, far more enemies must
be purchased than are actually needed to account for loss due to
emigration, making augmentation cost ineffective as a pest man-
agement tool for the vast majority of crops.

Restricting natural enemy movement can reduce emigration,
thereby enhancing the per-capita impact of released individuals
on prey. Prior work has mostly emphasized techniques that phys-
ically manipulate wings to discourage or prevent flight (e.g., clip-
ping, artificial selection, identification of natural flightless
strains), which have proven quite effective (Ferran et al., 1998;
Ignoffo et al., 1977; Lommen et al., 2008, 2013; Seko et al., 2008)
but also come with ecological and/or physiological costs. Namely,
flightless predators have shown reduced survival and fecundity
compared with flight-capable individuals (Seko and Miura, 2009).
Integrating behavior-modifying semiochemicals with predator or
parasitoid releases, however, may decrease the dispersal of aug-
mented beneficials without the associated costs of flightlessness.
Two promising candidates include herbivore-induced plant vola-
tiles (HIPVs) and aggregation pheromones.

HIPVs are chemicals released from plants after herbivore feed-
ing damage that are often used by higher trophic level arthropods
to locate their prey (Kessler and Baldwin, 2001; Thaler, 1999;
Turlings et al., 1990). Recent reviews have stressed the utility of
HIPV manipulations in modern biocontrol research (Kaplan,
2012; Khan et al., 2008; Rodriguez-Saona et al., 2012; Turlings
and Ton, 2006). However, these perspectives and the existing
empirical work exclusively focus on applications of HIPVs as
attractants in conservation biocontrol to increase recruitment of
naturally-occurring enemies into crop fields (James, 2003; James
and Price, 2004; Mallinger et al., 2011; Rodriguez-Saona et al.,
2011). HIPVs could serve an analogous role in augmentation by
acting as arrestants, decreasing emigration from release sites. To
date, no study has tested this hypothesis.

Aggregation pheromones are compounds emitted by male in-
sects that are attractive to conspecifics, including both sexes and
multiple life stages (i.e., adults + immatures) (Matthews and
Matthews 2010). In pest management, aggregation pheromones
are used in attraction–annihilation whereby insecticide-baited
pheromone traps are used to lure and kill pests (Lanier, 1990). In
comparison, relatively few aggregation pheromones have been
identified for beneficial arthropods. The only case in which a natural
enemy aggregation pheromone has been used in biocontrol came
after the identification and synthesis of the aggregation pheromone
from the spined solider bug, Podisus maculiventris (Say) (Aldrich
et al., 1984). Two companion studies used synthetic pheromone in
dispensers bordering the release plot to facilitate the movement of
augmented nymphs from their hatching site into pest-infested
potato fields (Aldrich and Cantelo, 1999; Sant’Ana et al., 1997). Thus,
similar to the mechanisms by which HIPVs function, aggregation
pheromones may be useful in increasing natural enemy retention
time in an area, as well as recruiting natural populations from
adjacent habitats.

We tested the hypothesis that HIPVs and aggregation phero-
mone reduce emigration of augmented predators from field plots
and increase pest consumption in a crop–pest–predator system
consisting of tomato, hornworm caterpillars (Manduca sexta L.),
and the predaceous stink bug, P. maculiventris.
2. Materials and methods

2.1. Study system

The tobacco hornworm, M. sexta, is a specialist herbivore on
solanaceous plants and a common defoliating pest of tomato
throughout the United States with tendencies to outbreak in the
Northeast and Northern Midwest (Foster and Flood, 2005). Horn-
worms used in this project derived from a laboratory colony main-
tained in West Lafayette, Indiana and were reared as neonates on
artificial diet until use in field trials (see Section 2.5).

The stink bug, P. maculiventris, is a native generalist predator,
predominantly consuming lepidopteran and coleopteran larvae,
which feeds by piercing prey and sucking their internal fluids via
its rostrum. It has shown promise as a biocontrol agent for inunda-
tive releases (Biever and Chauvin, 1992a,b; Evans, 1982; Hough-
Goldstein, 1998) and is currently the only commercially available
predaceous stink bug in North America (Rincon–Vitova Insectaries,
Ventura, CA). Adult P. maculiventris used in our experiment were
maintained in a laboratory colony established with insects from
Rincon–Vitova Insectaries and supplemented yearly with field
caught individuals from local populations. The colony was main-
tained at 16:8 LD at 26 �C with bean and tomato plants for water
and ad libitum mealworms, Tenebrio molitor L., as prey.

2.2. Experimental design

Sixteen 100 m2 field plots, each containing ca. 100 tomato
plants (5 rows � 20 plants/row) with >75 m inter-plot spacing,
were established during the summer of 2012 on the Meigs Farm
at Throckmorton Purdue Agricultural Center (Lafayette, IN, USA).
Processing tomato seedlings (RG-611; Red Gold Inc., Elwood, IN,
USA) were transplanted from mist-houses into plastic-covered,
raised beds in late May. All plots received drip irrigation, fertilizer,
and herbicide applications as needed to manage weeds, but insec-
ticides were not used.

Plots were assigned to one of four augmentation/semiochemical
treatments in a randomized complete block design, each block rep-
licated four times: (i) P. maculiventris release + aggregation phero-
mone [AUG + PHER]; (ii) P. maculiventris release + HIPV [AUG +
HIPV]; (iii) P. maculiventris release + no semiochemicals [AUG];
and (iv) No P. maculiventris release + no semiochemicals [CTRL].

2.3. Semiochemical treatments

The P. maculiventris aggregation pheromone was formulated
with the three primary components in the following ratio:
7.6% (E)-2-hexenal, 0.4% benzyl alcohol and 92% a-terpineol
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(Sigma–Aldrich, St. Louis, MO, USA). The pheromone was released
from 5 ml polyethylene screw-cap vials (Wheaton Science Prod-
ucts, Millville, NJ, USA). Two holes (2 mm diameter) were drilled
in each vial, which allowed for a string to hold the vial on a bamboo
stake, as well as to facilitate pheromone diffusion. Each vial con-
tained 4 mL of the pheromone mixture and was replaced every
two weeks for the duration of the experiment (release rate = ca.
75 mg/day). Two release devices were placed at plant terminal
height within the outside rows at opposite corners of each plot as-
signed to pheromone enhancement (Fig. 1) during the first week of
July, one week prior to the first predator release. Empty vials on
stakes but without pheromone were added as structural controls
in both CTRL and AUG treatment plots. For the HIPV application
we used 40d Predalure (AgBio Inc., Westminster, CO), a commer-
cially available methyl salicylate (MeSA) lure that is attractive to
numerous natural enemy taxa (James and Price, 2004; Rodri-
guez-Saona et al., 2011).

2.4. Augmentation

Predator releases were conducted in one replicate block
(although only 3 of the plots received supplemental predators,
CTRL did not) each week from July through September (12 total
weeks). Prior to each release, 300 mixed-age adult P. maculiventris
(50:50 M:F sex ratio) were removed from the laboratory colony.
Each individual was marked on its pronotum using fine-tipped
nontoxic paint markers (Treehouse Studio, Oklahoma City, OK,
USA) to identify their release plot (1–16) and date (1–12). A mark-
ing system employing two different colored dots allowed for un-
ique identification of all 36 cohorts (3 plots/week � 12 weeks)
released throughout the season. Adults were placed in individual
containers with water and one M. sexta neonate larva 48 h prior
to release. Approximately 1 h before release, we combined adults
of a cohort into a large plastic container. All releases were con-
ducted in late afternoon (ca. 18:00) when temperatures were
declining to avoid heat-related mortality. Each container was
Fig. 1. Schematic of experimental plot. Black lines delineate tomato rows (20
plants/row). Triangles = placement of semiochemical treatments. Circles = yellow
sticky cards. Rectangle = location of weekly augmentation release containers. Prey
reservoirs for monitoring caterpillar predation were placed on plants either ‘‘NEAR’’
(large dash) or ‘‘FAR’’ from lures (dotted).
placed in the center of the assigned plot and the top was removed,
allowing free movement of the augmented P. maculiventris into the
plot. Thirty-six hours later, each plot was visually searched for
10 min, at which time all encountered adult P. maculiventris (i.e.,
augmented or naturally occurring) were collected, identified, re-
corded, and stored at �80 �C for future analysis in the predation
assay.

2.5. Predation assay

To assess the impact of our semiochemical treatments on horn-
worm predation, we employed two different analysis techniques.
First, we created prey reservoirs on 10 plants per plot, chosen with
stratified randomization (see Fig. 1) on the day prior to P. maculiv-
entris augmentation. On each plant, a large tomato leaf was labeled
with field tape and ten 1st and 2nd instar M. sexta larvae were dis-
tributed across the leaflets. Prey reservoirs were recounted 48 h la-
ter, immediately following P. maculiventris recapture, and the
number of caterpillars missing used as a proxy for predation pres-
sure. Based on previous experience with this system, early instar
hornworm caterpillars are relatively sedentary and do not move
between leaves or plants. Further, individuals rarely drop from
plants, except in extreme weather. Thus, missing hornworms were
assumed to have been killed by predators. Daily predation rate was
calculated per plant and averaged across the 10 reservoirs to create
a plot-level average.

In addition to changes in prey density, we used immunomark-
ing to track actual field predation. Immunomarks are vertebrate
immunoglobulin proteins that can be used as a biochemical tracer
to directly quantify predation events (see Hagler, 2006, 2011; Hag-
ler and Durand, 1994). We recently developed an immunomarking
protocol using the tomato–M. sexta–P. maculiventris system
through which we determined that caterpillars reared on rabbit
IgG-infused artificial diet retained their mark for at least 7 days
after being transferred to unmarked tomato leaves (Kelly et al.,
2012). More importantly, the mark transfers from caterpillar to
stink bug during predation events and remains detectable in pre-
dators for ca. 48 h. Thus, we marked all caterpillars deployed in
the aforementioned prey reservoirs with rabbit IgG prior to field
releases. Before hatching, M. sexta eggs were placed in petri dishes
on 1.0 mg/mL rabbit IgG-enriched artificial diet following methods
in Kelly et al. (2012) (rabbit IgG: Equitech-Bio Inc., Kerrville, TX,
USA; hornworm diet: Southland Products Inc., Lake Village, AR,
USA). Neonates were reared on enhanced diet for ca. 3 days to en-
sure adequate mark uptake and then transferred to the field for
placement as prey reservoirs as noted above. Recaptured P. macu-
liventris were later assayed using ELISA for presence of the rabbit
IgG mark indicating predation on M. sexta larvae (see Section 2.6).

2.6. ELISA procedure

Each predator sample was ground in 500 lL of tris-buffer saline
(TBS) and assayed by the rabbit IgG ELISA described by Hagler
(1997) and Kelly et al. (2012). Optical densities (OD) were measured
using a microplate reader set at 650 nm, 10 min after substrate
addition. A positive test was indicated by an OD reading 6 standard
deviations above the pooled mean OD value of all negative controls,
as recommended by Sivakoff et al. (2011). Mean negative ELISA
value and standard deviation were calculated across all plates.

2.7. Scouting

Weekly scouting was conducted in all 16 plots to collect informa-
tion about naturally-occurring herbivores and natural enemies.
Plants were visually surveyed for insect presence with a focus on
study-specific pests (e.g., Lepidoptera, Pentatomidae), as well as other
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important tomato herbivores (e.g., Thripidae, Aleyrodidae, Aphidi-
dae) and affiliated natural enemies (e.g., Anthocoridae, Tachinidae,
Cotesia congregata, other parasitic Hymenoptera). Scouting involved
visual plant surveys for a total of 10 min per plot. In addition, 2 yellow
sticky cards were placed in opposite corners of each plot, between the
outer rows directly adjacent to the semiochemical lures at mid-plant
height, and exchanged every two weeks to monitor populations.
2.8. Statistical analyses

For mark-release-recapture data, ANOVA was used to analyze
the proportion of P. maculiventris recaptured with both treatment
and rainfall as categorical predictor variables. Proportion data were
arcsine square-root transformed to normalize the distribution.
Rainfall was treated as a categorical rather than continuous vari-
able because precipitation was virtually non-existent for the entire
week or extremely high with no intermediate values across the
summer. On-site weather station data were used to separate aug-
mentation trials by rainfall into two groups: (i) those that had little
to no rain in 36 h post-release and <1 inch total for the week (here-
after, ‘DRY’) vs. (ii) those that had rainfall at some point during the
36 h post-release period and a weekly total >1 inch (hereafter,
‘WET’). Neither plot nor block had an effect on recapture and were
thus removed from both this model and all subsequent analyses.

For naturally-occurring P. maculiventris, numbers were relatively
low, with only 89 total insects collected. Therefore, data were
summed per plot over the season and analyzed with ANOVA using
square root + 0.5 transformed counts as the dependent factor. One
difference in our analysis of released versus naturally-occurring P.
maculiventris: for released individuals, we only analyzed data for
the 3 treatments that were used to test augmentation (i.e., not the
CTRL), whereas data from all 4 treatments were used for wild
individuals.

For hornworm predation assays, the average number of M. sexta
larvae consumed per day (i.e., the number missing compared with
starting density) per plot was square root transformed and ana-
lyzed with ANOVA. Initially, only one value per plot (i.e., the overall
average of 10 plants) was used for predation analysis; however,
due to the likelihood that semiochemicals may be effective on a
relatively small (e.g., <5 m) scale we also analyzed the data accord-
ing to plant distance from lures. For this, subsets of data based on
the plot location (Fig. 1; FAR = > 2.5 m from a lure, NEAR = < 2.5 m
from a lure) were analyzed to test for treatment effect according to
different sampling regimes (FAR or NEAR from lures). The transfer
of protein mark to P. maculiventris was also analyzed with ANOVA
on the proportion of individuals per plot testing positive for preda-
tion over the season.

The impact of semiochemical treatment on arthropod commu-
nities was tested using individual ANOVAs on the square root + 0.5
transformed plot sums for all arthropod species that had seasonal
totals P50 individuals.

All analyses were completed using Statistica (vers. 11; StatSoft,
Tulsa, OK, USA).
3. Results

3.1. Augmentation recapture

Semiochemical treatment, overall, did not affect the proportion
of marked P. maculiventris recaptured (Table 1; F2,24 = 1.54,
p = 0.2381); however, low rainfall significantly increased retention
(F1,24 = 19.82, p = 0.0002). Releases in DRY weeks had 78% higher
recapture rates than WET, regardless of semiochemical treatment
(�XDRY ¼ 0:218; �XWET ¼ 0:122). Although there was no significant
interaction between treatment and rainfall (F2,24 = 0.81,
p = 0.4558), planned comparisons indicate AUG + PHER baited plots
improved retention under DRY conditions (Fig. 2; F1,24 = 4.54,
p = 0.0436).

Semiochemical treatment, however, increased the number of
wild P. maculiventris collected (Table 1; F3,12 = 38.55, p < 0.0001).
Planned comparisons confirmed the hypothesis that more natural
P. maculiventris were recovered in aggregation pheromone lure bai-
ted plots (F1,12 = 114.25, p < 0.0001), with 94% of all individuals col-
lected over the summer occurring in the AUG + PHER treatment
(Fig. 3).

3.2. Predation on prey reservoirs

Semiochemical treatment alone had a marginal effect on preda-
tion of hornworm caterpillars when tested using all caterpillars in
the plot (Fig. 4a; F3,44 = 2.11, p = 0.1120). When data were re-
stricted to either samples taken ‘‘near’’ or ‘‘far’’ from lures, how-
ever, we found strong effects of plot-level treatment. Namely,
caterpillars far from the lures at the center of release sites experi-
enced higher predation in the semiochemical-free AUG treatment
(Fig. 4b; F3,44 = 6.97, p = 0.0006), whereas the opposite was the
case when analyzing data using caterpillars near lures (Fig. 4c;
F3,44 = 7.19, p = 0.0005).

3.3. Protein mark transfer to P. maculiventris

Of 567 P. maculiventris captured, including both released and
wild individuals, only 24 (4.2%) tested positive for rabbit IgG, indi-
cating recent predation on M. sexta larvae (Table 1). No treatment
effect was observed for the proportion of predators testing positive
per plot, although this effect was marginally significant (F2,9 = 3.12,
p = 0.0942).

3.4. Arthropod communities

No effects of semiochemical treatment were found on the abun-
dance of any herbivore, omnivore or predator (Table 2). However,
we detected significant effects on tachinid flies (Fig. 5a;
F3,12 = 7.42, p = 0.0045) and parasitic Hymenoptera (Fig. 5b;
F3,12 = 4.28, p = 0.0284). Both parasitoids were more abundant in
MeSA- and pheromone-baited plots (Hymenoptera [F1,12 = 12.73,
p = 0.0039]; Tachinidae [F1,12 = 20.25, p = 0.0007]).

We only collected 11 total non-Podisus Pentatomidae (0 in CTRL,
2 in AUG, 6 in AUG + PHER and 3 in AUG + HIPV). Wild caught M.
sexta were included in the Lepidoptera category; however, only 3
individuals were collected (1 in CTRL, 0 in AUG, 0 in AUG + PHER
and 2 in AUG + HIPV). We also recovered 9 C. congregata (Hyme-
noptera: Braconidae) parasitized M. sexta caterpillars (1 in CTRL,
3 in AUG, 0 in AUG + PHER and 5 in AUG + HIPV). Although these
insect groups are ecologically pertinent to the study system, they
were not statistically analyzed because of low counts.
4. Discussion

This work demonstrates the important role semiochemicals
play in mediating natural enemy behavior in cases of augmenta-
tion, most notably when optimal weather conditions are exploited.
The uniformly low recapture rates across all treatments in WET
compared with DRY weather suggest that abiotic factors should
be a primary consideration for timing releases. Little to no rain dur-
ing and immediately following augmentation resulted in retention
rates 78% higher than adverse conditions. This outcome corre-
sponds with Collier and Van Steenwyk’s (2004) review, which
highlighted ‘unfavorable environment’ as the most commonly ci-
ted ecological factor limiting the success of augmentation among



Table 1
Raw data for augmented, recaptured and naturally occurring P. maculiventris by plot treatment. Data show number released, number recaptured, proportion recaptured, number
of wild individuals, number of individuals testing positive for hornworm consumption (‘predation events’), and proportion of recaptured individuals testing positive for
hornworm predation.

Treatment No. released No. recaptured Proportion recaptured No. wild Predation events Proportion marked

AUG 946 150 0.159 4 13 0.084
AUG + PHER 941 184 0.196 84 8 0.030
AUG + HIPV 938 144 0.154 1 3 0.021
Total 2825 478 0.170 89 24 0.042

Fig. 2. Proportion (mean + SE) of released P. maculiventris recaptured 36 h post release by treatment in WET (a) and DRY (b) weeks. Gray bars show data from DRY weeks with
<1 inch weekly total rain and black bars show WET with >1 inch. Only AUG + PHER had a significantly higher recapture rate between DRY and WET conditions. Asterisk
indicates significant difference from the control.

Fig. 3. Number of naturally collected P. maculiventris per plot (mean + SE) across
treatments. Asterisk indicates significant difference from the control. Numbers
inside gray bars are raw data for total number summed over the season.
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published field studies. Importantly, our work differs from these
previous accounts in two respects. First, previous studies defined
‘unfavorable environment’ as hot and/or dry conditions. In our
study, temperature variation played no role in the likelihood of
stink bug recapture (data not shown) and unlike previous studies
precipitation was opposite from the current trend – excessive rain-
fall, rather than lack of rain, reduced recapture rates. Second, most
of the cited study systems affected by abiotic factors deployed pre-
daceous mites. This taxonomic difference is notable because mites
are small arthropods that are perhaps more likely to be adversely
affected by weather, whereas predaceous stink bugs represent
one of the largest and most robust predators commercially
available. The unusual weather patterns during the summer of
2011 in the Midwestern U.S., which was marked by severe drought
punctuated by brief periods of intense rainfall, may be partially
responsible for this effect. It remains unclear whether excessive
rain elicited emigration of stink bugs from plots or increased
mortality rates. However, it was not uncommon to encounter dead
P. maculiventris from augmented cohorts, particularly around the
plant base where plastic beds were torn and/or pitted.

When weather conditions were DRY, higher recapture rates in
the AUG + PHER plots indicates that deployment of aggregation
pheromone-baited lures decreased P. maculiventris emigration. A
comparable phenomenon was reported in two published field
studies where strategic placement of pheromone-baited lures
mediated P. maculiventris nymph dispersal (Aldrich and Cantelo,
1999; Sant’Ana et al., 1997). Both studies only augmented nymphs,
reducing the likelihood for loss due to emigration because they
cannot fly from the release site. Conversely, the broad-spectrum
HIPV, MeSA, did not affect P. maculiventris recapture rates. This
may be due to a lack of prior learning experience with the com-
pound. Generalist predators are known to require associative
learning (i.e., pairing of stimulus with food reward) for developing
attraction to HIPVs, including MeSA (Allison and Hare, 2009; Drukker
et al., 2000; Glinwood et al., 2011), and insectary-derived individuals
lack this association. A pre-release training regime that consisted of
volatile + food reward exposure is worth considering for future efforts
that integrate HIPVs with augmentation biocontrol. However, the fact
that wild stink bugs also selectively responded to pheromone and not
HIPVs (Fig. 2) suggests that MeSA may simply be a poor candidate for
attracting P. maculiventris. To our knowledge, no published studies
have documented pentatomids responding to MeSA in the field.

Field predation assays revealed several key patterns. First,
although many stink bugs emigrate from semiochemical-free plots,
some fraction clearly remain at the release site and feed on prey
(compare CTRL vs. AUG in Fig. 4a), suggesting that augmentation



Table 2
Individual ANOVA results for the effect of semiochemical treatment on the tomato
arthropod community. Asterisks indicate significant effect of treatment on
abundance.

Arthropod group F3,12 p

Herbivore
Aleyrodidae 1.53 0.2528
Aphididae 1.35 0.3035
Cicadellidae 0.64 0.5746
Lepidoptera 1.21 0.3489
Thripidae 0.91 0.4665

Omnivore
Berytidae 0.19 0.9019

Predator
Total Complex 1.06 0.4033

Parasitoid
Hymenoptera⁄ 4.28 0.0284
Tachinidae⁄ 7.42 0.0045

Fig. 5. Seasonal counts (mean + SE) of Tachnidae (a) and Hymenoptera (b) by
semiochemical treatment. Numbers inside gray bars indicate raw data for season
totals.

Fig. 4. Number of M. sexta consumed per day (mean + SE) by overall treatment (a) and treatment � location within plot (b – FAR from the semiochemical lure, c – NEAR the
semiochemical lure). Asterisks indicate significant difference from the control.
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alone provides some baseline pest suppression value. Interestingly,
this effect only occurred within a few meters of the release location
and not at the outer edges of the plot (compare CTRL vs. AUG in
Fig. 4b vs. 4c). Thus, the few retained P. maculiventris display a nat-
ural tendency to remain within several meters of their release. Sec-
ond, MeSA and pheromone were quite effective at ‘pulling’ stink
bugs from the central release site to increase predation near lures
on the outer edges of plots (compare CTRL vs. AUG + PHER and
AUG + HIPV in Fig. 4b vs. 4c). These combined data provide evi-
dence that semiochemicals manipulate P. maculiventris behavior
to enhance pest consumption. This enhancement, however, came
with a cost; namely, pulling predators to plot edges reduced their
impact on caterpillars in the plot center. Recent work has warned
of this phenomenon (the ‘robbing Peter to pay Paul’ effect)
whereby semiochemical-mediated movement of natural enemies
initiates downstream effects, manifested as aggravated pest out-
breaks in adjacent areas ‘robbed’ of their consumers (Braasch and
Kaplan, 2012; Jones et al., 2011). Unlike our mark-release-recap-
ture evaluation, the predation assay data suggest that MeSA
worked as well as pheromone in manipulating stink bug behavior.
It would be interesting for future studies to also test the combined
rather than singular impacts of HIPVs and pheromone. Recent
work screening semiochemical blends for Chrysopa sp. lacewing
attraction in apple orchards demonstrated strong synergism be-
tween HIPVs (MeSA) and aggregation pheromone (iridodial) when
presented together (Jones et al., 2011).

While protein marking confirmed that P. maculiventris indeed
consumes hornworms in the field, the rate was quite low (4.2%),
limiting our ability to draw conclusions from this technique. The
impact of semiochemicals on the proportion testing positive for
immunoglobulin was marginally significant (p = 0.0942), and data
trends suggest that deploying pheromone or MeSA may in fact re-
duce prey capture efficiency (AUG = 8.4%, AUG + PHER = 3.0%,
HIPV = 2.1%). This is especially the case for HIPVs, which have been
suggested to reduce per-capita predator foraging efficiency when
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deployed as synthetic lures due to chemically masking natural HIP-
Vs emitted from pest-damaged crops (Kaplan, 2012).

Notably, semiochemical treatment had no impact on herbi-
vores, providing evidence that lures do not elicit non-target effects
by attracting pests. Both MeSA and pheromone attracted parasitic
wasps and flies, but not predators. Methodological biases may be
partially responsible for this divergence. Parasitoids are small
and only sampled via yellow sticky cards, resulting in much higher
seasonal counts compared with larger, ground-dwelling predators
such as spiders and carabid beetles that are visually scouted at a
much lower frequency. Though previous research shows that HIP-
Vs such as MeSA attract a broad suite of natural enemies (Braasch
et al., 2012; Rodriguez-Saona et al., 2011), species-specific phero-
mones are considered selectively attractive, making the parasitoid
response to stink bug pheromone puzzling. This association is
likely the result of stink bug parasites eavesdropping on their
host’s pheromone signals, as has been shown in other parasitoid-
host systems (Wertheim et al., 2003, 2005; Wyatt, 2004). Attrac-
tion to P. maculiventris pheromone has been previously observed
within Tachinidae by the specialist, Hemyda aurata (Robineau–
Desvoidy), and the Pentatomidae generalist, Euclytia flava (Town-
send), as well as within Hymenoptera by the generalist egg parasit-
oid Telenomus sp. (Aldrich et al., 1984). Although insects from
sticky cards were only identified to the family level, Telenomus
sp. and H. aurata were collected from vials containing the aggrega-
tion pheromone lure. Additionally, Ceratina sp. (Hymenoptera: Api-
dae) were collected from vials mid-summer, likely due to an
overlap in components of the pheromone blend and their floral re-
sources. Analogous patterns of tachinid attraction to pentatomid
aggregation pheromone have been reported for the consperse stink
bug, Euschistus conspersus (Uhler), an orchard pest in the Pacific
Northwest (Krupke and Brunner, 2003). Together, these data point
to the potential negative consequences of using aggregation pher-
omone, if elevated parasitoid attraction counteracts the benefits
associated with retaining more P. maculiventris. Future experimen-
tal studies would benefit from assessing the inter-generational
consequences of semiochemical enhancements to determine
whether the short-term benefits also result in a net improvement
in pest control over longer time scales.
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